Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 21
Фильтр
1.
Adv Sci (Weinh) ; : e2301222, 2023 May 24.
Статья в английский | MEDLINE | ID: covidwho-20230806

Реферат

Airborne SARS-CoV-2 virus surveillance faces challenges in complicated biomarker enrichment, interferences from various non-specific matters and extremely low viral load in the urban ambient air, leading to difficulties in detecting SARS-CoV-2 bioaerosols. This work reports a highly specific bioanalysis platform, with an exceptionally low limit-of-detection (≤1 copy m-3 ) and good analytical accordance with RT-qPCR, relying on surface-mediated electrochemical signaling and enzyme-assisted signal amplification, enabling gene and signal amplification for accurate identification and quantitation of low doses human coronavirus 229E (HCoV-229E) and SARS-CoV-2 viruses in urban ambient air. This work provides a laboratory test using cultivated coronavirus to simulate the airborne spread of SARS-CoV-2, and validate that the platform could reliably detect airborne coronavirus and reveal the transmission characteristics. This bioassay conducts the quantitation of real-world HCoV-229E and SARS-CoV-2 in airborne particulate matters collected from road-side and residential areas in Bern and Zurich (Switzerland) and Wuhan (China), with resultant concentrations verified by RT-qPCR.

2.
Environ Chem Lett ; 21(2): 725-739, 2023.
Статья в английский | MEDLINE | ID: covidwho-2241154

Реферат

Policies and measures to control pandemics are often failing. While biological factors controlling transmission are usually well explored, little is known about the environmental drivers of transmission and infection. For instance, respiratory droplets and aerosol particles are crucial vectors for the airborne transmission of the severe acute respiratory syndrome coronavirus 2, the causation agent of the coronavirus 2019 pandemic (COVID-19). Once expectorated, respiratory droplets interact with atmospheric particulates that influence the viability and transmission of the novel coronavirus, yet there is little knowledge on this process or its consequences on virus transmission and infection. Here we review the effects of atmospheric particulate properties, vortex zones, and air pollution on virus survivability and transmission. We found that particle size, chemical constituents, electrostatic charges, and the moisture content of airborne particles can have notable effects on virus transmission, with higher survival generally associated with larger particles, yet some viruses are better preserved on small particles. Some chemical constituents and surface-adsorbed chemical species may damage peptide bonds in viral proteins and impair virus stability. Electrostatic charges and water content of atmospheric particulates may affect the adherence of virion particles and possibly their viability. In addition, vortex zones and human thermal plumes are major environmental factors altering the aerodynamics of buoyant particles in air, which can strongly influence the transport of airborne particles and the transmission of associated viruses. Insights into these factors may provide explanations for the widely observed positive correlations between COVID-19 infection and mortality with air pollution, of which particulate matter is a common constituent that may have a central role in the airborne transmission of the novel coronavirus. Supplementary Information: The online version contains supplementary material available at 10.1007/s10311-022-01557-z.

3.
Environmental Chemistry Letters ; : 1-15, 2023.
Статья в английский | EuropePMC | ID: covidwho-2168412

Реферат

Policies and measures to control pandemics are often failing. While biological factors controlling transmission are usually well explored, little is known about the environmental drivers of transmission and infection. For instance, respiratory droplets and aerosol particles are crucial vectors for the airborne transmission of the severe acute respiratory syndrome coronavirus 2, the causation agent of the coronavirus 2019 pandemic (COVID-19). Once expectorated, respiratory droplets interact with atmospheric particulates that influence the viability and transmission of the novel coronavirus, yet there is little knowledge on this process or its consequences on virus transmission and infection. Here we review the effects of atmospheric particulate properties, vortex zones, and air pollution on virus survivability and transmission. We found that particle size, chemical constituents, electrostatic charges, and the moisture content of airborne particles can have notable effects on virus transmission, with higher survival generally associated with larger particles, yet some viruses are better preserved on small particles. Some chemical constituents and surface-adsorbed chemical species may damage peptide bonds in viral proteins and impair virus stability. Electrostatic charges and water content of atmospheric particulates may affect the adherence of virion particles and possibly their viability. In addition, vortex zones and human thermal plumes are major environmental factors altering the aerodynamics of buoyant particles in air, which can strongly influence the transport of airborne particles and the transmission of associated viruses. Insights into these factors may provide explanations for the widely observed positive correlations between COVID-19 infection and mortality with air pollution, of which particulate matter is a common constituent that may have a central role in the airborne transmission of the novel coronavirus. Supplementary Information The online version contains supplementary material available at 10.1007/s10311-022-01557-z.

4.
Environ Pollut ; 315: 120408, 2022 Dec 15.
Статья в английский | MEDLINE | ID: covidwho-2068946

Реферат

Large reductions in anthropogenic emissions during the Chinese New Year (CNY) holiday in Beijing have been well reported. However, the changes during the CNY of 2021 are different because most people stayed in Beijing to control the spread of coronavirus disease (COVID-19). Here a high-resolution aerosol mass spectrometer (HR-AMS) was deployed for characterization of the changes in size-resolved aerosol composition and sources during the CNY. We found that the reductions in traffic-related NOx and fossil fuel-related organic aerosol (OA), and cooking OA (1.3-12.7%) during the CNY of 2021 were much smaller than those in previous CNY holidays of 2013, 2015, and 2020. In contrast, the mass concentrations of secondary aerosol species except nitrate showed ubiquitous increases (17.6-30.4%) during the CNY of 2021 mainly due to a 4-day severe haze episode. OA composition also changed substantially during the CNY of 2021. In particular, we observed a large increase by nearly a factor of 2 in oxidized primary OA likely from biomass burning, and a decrease of 50.1% in aqueous-phase secondary OA. A further analysis of the severe haze episode during the CNY illustrated a rapid transition of secondary formation from photochemical to aqueous-phase processing followed by a scavenging process, leading to significant changes in aerosol composition, size distributions, and oxidation degree of OA. A parameterization relationship between oxygen-to-carbon (O/C) and f44 (fraction of m/z 44 in OA) from a collocated capture vaporizer aerosol chemical speciation monitor (CV-ACSM) was developed, which has a significant implication for characterization of OA evolution and the impacts on hygroscopicity due to the rapidly increased deployments of CV-ACSM worldwide.


Тема - темы
Air Pollutants , COVID-19 , Humans , Particulate Matter/analysis , Air Pollutants/analysis , Respiratory Aerosols and Droplets , Beijing , Environmental Monitoring
5.
Atmosphere ; 13(7):1042, 2022.
Статья в английский | ProQuest Central | ID: covidwho-1963693

Реферат

Previous studies have determined biomass burning as a major source of air pollutants in the ambient air in Thailand. To analyse the impacts of meteorological parameters on the variation of carbonaceous aerosols and water-soluble ionic species (WSIS), numerous statistical models, including a source apportionment analysis with the assistance of principal component analysis (PCA), hierarchical cluster analysis (HCA), and artificial neural networks (ANNs), were employed in this study. A total of 191 sets of PM2.5 samples were collected from the three monitoring stations in Chiang-Mai, Bangkok, and Phuket from July 2020 to June 2021. Hotspot numbers and other meteorological parameters were obtained using NOAA-20 weather satellites coupled with the Global Land Data Assimilation System. Although PCA revealed that crop residue burning and wildfires are the two main sources of PM2.5, ANNs highlighted the importance of wet deposition as the main depletion mechanism of particulate WSIS and carbonaceous aerosols. Additionally, Mg2+ and Ca2+ were deeply connected with albedo, plausibly owing to their strong hygroscopicity as the CCNs responsible for cloud formation.

6.
Adv Atmos Sci ; 39(8): 1229-1238, 2022.
Статья в английский | MEDLINE | ID: covidwho-1930401

Реферат

On 22 September 2020, within the backdrop of the COVID-19 global pandemic, China announced its climate goal for peak carbon emissions before 2030 and to reach carbon neutrality before 2060. This carbon-neutral goal is generally considered to cover all anthropogenic greenhouse gases. The planning effort is now in full swing in China, but the pathway to decarbonization is unclear. The needed transition towards non-fossil fuel energy and its impact on China and the world may be more profound than its reform and development over the past 40 years, but the challenges are enormous. Analysis of four representative scenarios shows significant differences in achieving the carbon-neutral goal, particularly the contribution of non-fossil fuel energy sources. The high target values for nuclear, wind, and bioenergy have approached their corresponding resource limitations, with solar energy being the exception, suggesting solar's critical role. We also found that the near-term policies that allow for a gradual transition, followed by more drastic changes after 2030, can eventually reach the carbon-neutral goal and lead to less of a reduction in cumulative emissions, thus inconsistent with the IPCC 1.5°C scenario. The challenges and prospects are discussed in the historical context of China's socio-economic reform, globalization, international collaboration, and development.

7.
Atmospheric Chemistry and Physics ; 22(12):8369-8384, 2022.
Статья в английский | ProQuest Central | ID: covidwho-1911960

Реферат

Due to the complexity of emission sources, a better understanding of aerosol optical properties is required to mitigate climate change in China. Here, an intensive real-time measurement campaign was conducted in an urban area of China before and during the COVID-19 lockdown in order to explore the impacts of anthropogenic activities on aerosol light extinction and the direct radiative effect (DRE). The mean light extinction coefficient (bext) decreased from 774.7 ± 298.1 Mm-1 during the normal period to 544.3 ± 179.4 Mm-1 during the lockdown period. A generalised additive model analysis indicated that the large decline in bext (29.7 %) was due to sharp reductions in anthropogenic emissions. Chemical calculation of bext based on a ridge regression analysis showed that organic aerosol (OA) was the largest contributor to bext in both periods (45.1 %–61.4 %), and the contributions of two oxygenated OAs to bext increased by 3.0 %–14.6 % during the lockdown. A hybrid environmental receptor model combined with chemical and optical variables identified six sources of bext. It was found thatbext from traffic-related emissions, coal combustion, fugitive dust, the nitrate and secondary OA (SOA) source, and the sulfate and SOA source decreased by 21.4 %–97.9 % in the lockdown, whereas bext from biomass burning increased by 27.1 %, mainly driven by the undiminished need for residential cooking and heating. An atmospheric radiative transfer model was further used to illustrate that biomass burning, rather than traffic-related emissions, became the largest positive effect (10.0 ± 10.9 W m-2) on aerosol DRE in the atmosphere during the lockdown. Our study provides insights into aerosol bext and DRE from anthropogenic sources, and the results imply the importance of controlling biomass burning for tackling climate change in China in the future.

8.
Chemosphere ; 303(Pt 2): 135013, 2022 Sep.
Статья в английский | MEDLINE | ID: covidwho-1864545

Реферат

A single particle aerosol mass spectrometer was deployed in a heavily polluted area of China during a coronavirus lockdown to explore the impact of reduced anthropogenic emissions on the chemical composition, size distributions, mixing state, and secondary formation of urban aerosols. Ten particle groups were identified using an adaptive resonance network algorithm. Increased atmospheric oxidation during the lockdown period (LP) resulted in a 42.2%-54% increase in the major NaK-SN particle fraction relative to the normal period (NP). In contrast, EC-aged particles decreased from 31.5% (NP) to 23.7% (LP), possibly due to lower emissions from motor vehicles and coal combustion. The peak particle size diameter increased from 440 nm during the NP to 500 nm during LP due to secondary particle formation. High proportions of mixed 62NO3- indicate extensive particle aging. Correlations between secondary organic (43C2H3O+, oxalate) and secondary inorganic species (62NO3-, 97HSO4- and 18NH4+) versus oxidants (Ox = O3 + NO2) and relative humidity (RH) indicate that increased atmospheric oxidation promoted the generation of secondary species, while the effects of RH were more complex. Differences between the NP and LP show that reductions in primary emissions had a remarkable impact on the aerosol particles. This study provides new insights into the effects of pollution emissions on atmospheric reactions and the specific aerosol types in urban regions.


Тема - темы
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring/methods , Particle Size , Particulate Matter/analysis
9.
Appl Microbiol Biotechnol ; 106(5-6): 2207-2218, 2022 Mar.
Статья в английский | MEDLINE | ID: covidwho-1712228

Реферат

The pandemic of coronavirus disease 2019 (COVID-19) continues to threaten public health. For developing countries where vaccines are still in shortage, cheaper alternative molecular methods for SARS-CoV-2 identification can be crucial to prevent the next wave. Therefore, 14 primer sets recommended by the World Health Organization (WHO) was evaluated on testing both clinical patient and environmental samples with the gold standard diagnosis method, TaqMan-based RT-qPCR, and a cheaper alternative method, SYBR Green-based RT-qPCR. Using suitable primer sets, such as ORF1ab, 2019_nCoV_N1 and 2019_nCoV_N3, the performance of the SYBR Green approach was comparable or better than the TaqMan approach, even when considering the newly dominating or emerging variants, including Delta, Eta, Kappa, Lambda, Mu, and Omicron. ORF1ab and 2019_nCoV_N3 were the best combination for sensitive and reliable SARS-CoV-2 molecular diagnostics due to their high sensitivity, specificity, and broad accessibility. KEY POINTS: • With suitable primer sets, the SYBR Green method performs better than the TaqMan one. • With suitable primer sets, both methods should still detect the new variants well. • ORF1ab and 2019_nCoV_N3 were the best combination for SARS-CoV-2 detection.


Тема - темы
COVID-19 , SARS-CoV-2 , Benzothiazoles , COVID-19/diagnosis , Diamines , Humans , Quinolines , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
10.
Advances in atmospheric sciences ; : 1-10, 2022.
Статья в английский | EuropePMC | ID: covidwho-1652401

Реферат

On 22 September 2020, within the backdrop of the COVID-19 global pandemic, China announced its climate goal for peak carbon emissions before 2030 and to reach carbon neutrality before 2060. This carbon-neutral goal is generally considered to cover all anthropogenic greenhouse gases. The planning effort is now in full swing in China, but the pathway to decarbonization is unclear. The needed transition towards non-fossil fuel energy and its impact on China and the world may be more profound than its reform and development over the past 40 years, but the challenges are enormous. Analysis of four representative scenarios shows significant differences in achieving the carbon-neutral goal, particularly the contribution of non-fossil fuel energy sources. The high target values for nuclear, wind, and bioenergy have approached their corresponding resource limitations, with solar energy being the exception, suggesting solar's critical role. We also found that the near-term policies that allow for a gradual transition, followed by more drastic changes after 2030, can eventually reach the carbon-neutral goal and lead to less of a reduction in cumulative emissions, thus inconsistent with the IPCC 1.5°C scenario. The challenges and prospects are discussed in the historical context of China's socio-economic reform, globalization, international collaboration, and development. Electronic supplementary material Supplementary material is available in the online version of this article at 10.1007/s00376-021-1313-6.

11.
Environ Pollut ; 293: 118544, 2022 Jan 15.
Статья в английский | MEDLINE | ID: covidwho-1520901

Реферат

It is enlightening to determine the discrepancies and potential reasons for the degree of impact from the COVID-19 control measures on air quality as well as the associated health and economic impacts. Analysis of air quality, socio-economic factors, and meteorological data from 447 cities in 46 countries indicated that the COVID-19 control measures had significant impacts on the PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 µm) concentrations in 20 (reduced PM2.5 concentrations of -7.4-29.1 µg m-3) of the selected 46 countries. In these 20 countries, the robustly distinguished changes in the PM2.5 concentrations caused by the control measures differed between the developed (95% confidence interval (CI): -2.7-5.5 µg m-3) and developing countries (95% CI: 8.3-23.2 µg m-3). As a result, the COVID-19 lockdown reduced death and hospital admissions change from the decreased PM2.5 concentrations by 7909 and 82,025 cases in the 12 developing countries, and by 78 and 1214 cases in the eight developed countries. The COVID-19 lockdown reduced the economic cost from the PM2.5 related health burden by 54.0 million dollars in the 12 developing countries and by 8.3 million dollars in the eight developed countries. The disparity was related to the different chemical compositions of PM2.5. In particular, the concentrations of primary PM2.5 (e.g., BC) in cities of developing countries were 3-45 times higher than those in developed countries, so the mass concentration of PM2.5 was more sensitive to the reduced local emissions in developing countries during the COVID-19 control period. The mass fractions of secondary PM2.5 in developed countries were generally higher than those in developing countries. As a result, these countries were more sensitive to the secondary atmospheric processing that may have been enhanced due to reduced local emissions.


Тема - темы
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Cities , Communicable Disease Control , Developing Countries , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
12.
Geoscience Frontiers ; : 101320, 2021.
Статья в английский | ScienceDirect | ID: covidwho-1482603

Реферат

Intensive measurements were conducted in Xi’an, China before and during a COVID-19 lockdown period to investigate how changes in anthropogenic emissions affected the optical properties and radiative effects of brown carbon (BrC) aerosol. The contribution of BrC to total aerosol light absorption during the lockdown (13%–49%) was higher compared with the normal period (4%–29%). Mass absorption cross-sections (MAC) of specific organic aerosol (OA) factors were calculated from a ridge regression model. Of the primary OA (POA), coal combustion OA (CCOA) had the largest MACs at all tested wavelengths during both periods due to high molecular-weight BrC chromophores;that was followed by biomass burning OA (BBOA) and hydrocarbon-like OA (HOA). For secondary OA (SOA), the MACs of the less-oxidized oxygenated OA (OOA) species (LO-OOA) at λ = 370–590 nm were higher than those of more-oxidized OOA (MO-OOA) during both periods, presumably due to chromophore bleaching. The largest contributor to BrC absorption at the short wavelengths was CCOA during both periods, but BrC absorption by LO-OOA and MO-OOA became dominant at longer wavelengths during the lockdown. The estimated radiation forcing efficiency of BrC over 370–600 nm increased from 37.5 W· g-1 during the normal period to 50.2 W·g-1 during the lockdown, and that enhancement was mainly caused by higher MACs for both LO-OOA and MO-OOA. This study provides insights into the optical properties and radiative effects of source-specific BrC aerosol when pollution emissions are reduced.

15.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Статья в английский | MEDLINE | ID: covidwho-1354160

Реферат

The real-time monitoring of reductions of economic activity by containment measures and its effect on the transmission of the coronavirus (COVID-19) is a critical unanswered question. We inferred 5,642 weekly activity anomalies from the meteorology-adjusted differences in spaceborne tropospheric NO2 column concentrations after the 2020 COVID-19 outbreak relative to the baseline from 2016 to 2019. Two satellite observations reveal reincreasing economic activity associated with lifting control measures that comes together with accelerating COVID-19 cases before the winter of 2020/2021. Application of the near-real-time satellite NO2 observations produces a much better prediction of the deceleration of COVID-19 cases than applying the Oxford Government Response Tracker, the Public Health and Social Measures, or human mobility data as alternative predictors. A convergent cross-mapping suggests that economic activity reduction inferred from NO2 is a driver of case deceleration in most of the territories. This effect, however, is not linear, while further activity reductions were associated with weaker deceleration. Over the winter of 2020/2021, nearly 1 million daily COVID-19 cases could have been avoided by optimizing the timing and strength of activity reduction relative to a scenario based on the real distribution. Our study shows how satellite observations can provide surrogate data for activity reduction during the COVID-19 pandemic and monitor the effectiveness of containment to the pandemic before vaccines become widely available.


Тема - темы
Air Pollution/adverse effects , COVID-19/epidemiology , Machine Learning , COVID-19/etiology , China/epidemiology , Humans , Socioeconomic Factors
17.
Environ Int ; 150: 106426, 2021 05.
Статья в английский | MEDLINE | ID: covidwho-1071317

Реферат

Restrictions on human activities were implemented in China to cope with the outbreak of the Coronavirus Disease 2019 (COVID-19), providing an opportunity to investigate the impacts of anthropogenic emissions on air quality. Intensive real-time measurements were made to compare primary emissions and secondary aerosol formation in Xi'an, China before and during the COVID-19 lockdown. Decreases in mass concentrations of particulate matter (PM) and its components were observed during the lockdown with reductions of 32-51%. The dominant contributor of PM was organic aerosol (OA), and results of a hybrid environmental receptor model indicated OA was composed of four primary OA (POA) factors (hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), and coal combustion OA (CCOA)) and two oxygenated OA (OOA) factors (less-oxidized OOA (LO-OOA) and more-oxidized OOA (MO-OOA)). The mass concentrations of OA factors decreased from before to during the lockdown over a range of 17% to 58%, and they were affected by control measures and secondary processes. Correlations of secondary aerosols/ΔCO with Ox (NO2 + O3) and aerosol liquid water content indicated that photochemical oxidation had a greater effect on the formation of nitrate and two OOAs than sulfate; however, aqueous-phase reaction presented a more complex effect on secondary aerosols formation at different relative humidity condition. The formation efficiencies of secondary aerosols were enhanced during the lockdown as the increase of atmospheric oxidation capacity. Analyses of pollution episodes highlighted the importance of OA, especially the LO-OOA, for air pollution during the lockdown.


Тема - темы
Air Pollutants , Air Pollution , COVID-19 , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , China , Communicable Disease Control , Environmental Monitoring , Humans , Particulate Matter/analysis , SARS-CoV-2
18.
Innovation (Camb) ; 1(3): 100062, 2020 Nov 25.
Статья в английский | MEDLINE | ID: covidwho-919493

Реферат

Lockdown measures are essential to containing the spread of coronavirus disease 2019 (COVID-19), but they will slow down economic growth by reducing industrial and commercial activities. However, the benefits of activity control from containing the pandemic have not been examined and assessed. Here we use daily carbon dioxide (CO2) emission reduction in China estimated from statistical data for energy consumption and satellite data for nitrogen dioxide (NO2) measured by the Ozone Monitoring Instrument (OMI) as an indicator for reduced activities consecutive to a lockdown. We perform a correlation analysis to show that a 1% day-1 decrease in the rate of COVID-19 cases is associated with a reduction in daily CO2 emissions of 0.22% ± 0.02% using statistical data for energy consumption relative to emissions without COVID-19, or 0.20% ± 0.02% using satellite data for atmospheric column NO2. We estimate that swift action in China is effective in limiting the number of COVID-19 cases <100,000 with a reduction in CO2 emissions of up to 23% by the end of February 2020, whereas a 1-week delay would have required greater containment and a doubling of the emission reduction to meet the same goal. By analyzing the costs of health care and fatalities, we find that the benefits on public health due to reduced activities in China are 10-fold larger than the loss of gross domestic product. Our findings suggest an unprecedentedly high cost of maintaining activities and CO2 emissions during the COVID-19 pandemic and stress substantial benefits of containment in public health by taking early actions to reduce activities during the outbreak of COVID-19.

19.
Environ Int ; 142: 105832, 2020 09.
Статья в английский | MEDLINE | ID: covidwho-381748

Реферат

During the rapid rise in COVID-19 illnesses and deaths globally, and notwithstanding recommended precautions, questions are voiced about routes of transmission for this pandemic disease. Inhaling small airborne droplets is probable as a third route of infection, in addition to more widely recognized transmission via larger respiratory droplets and direct contact with infected people or contaminated surfaces. While uncertainties remain regarding the relative contributions of the different transmission pathways, we argue that existing evidence is sufficiently strong to warrant engineering controls targeting airborne transmission as part of an overall strategy to limit infection risk indoors. Appropriate building engineering controls include sufficient and effective ventilation, possibly enhanced by particle filtration and air disinfection, avoiding air recirculation and avoiding overcrowding. Often, such measures can be easily implemented and without much cost, but if only they are recognised as significant in contributing to infection control goals. We believe that the use of engineering controls in public buildings, including hospitals, shops, offices, schools, kindergartens, libraries, restaurants, cruise ships, elevators, conference rooms or public transport, in parallel with effective application of other controls (including isolation and quarantine, social distancing and hand hygiene), would be an additional important measure globally to reduce the likelihood of transmission and thereby protect healthcare workers, patients and the general public.


Тема - темы
Air Microbiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Aerosols , Betacoronavirus , COVID-19 , Crowding , Disinfection/instrumentation , Filtration , Humans , Inhalation Exposure , SARS-CoV-2 , Ventilation
20.
Sci Total Environ ; 731: 139133, 2020 Aug 20.
Статья в английский | MEDLINE | ID: covidwho-186671

Реферат

Measures taken to control the disease (Covid-19) caused by the novel coronavirus dramatically reduced the number of vehicles on the road and diminished factory production. For this study, changes in the air quality index (AQI) and the concentrations of six air pollutants (PM2.5, PM10, CO, SO2, NO2, and O3) were evaluated during the Covid-19 control period in northern China. Overall, the air quality improved, most likely due to reduced emissions from the transportation and secondary industrial sectors. Specifically, the transportation sector was linked to the NO2 emission reductions, while lower emissions from secondary industries were the major cause for the reductions of PM2.5 and CO. The reduction in SO2 concentrations was only linked to the industrial sector. However, the reductions in emissions did not fully eliminate air pollution, and O3 actually increased, possibly because lower fine particle loadings led to less scavenging of HO2 and as a result greater O3 production. These results also highlight need to control emissions from the residential sector.


Тема - темы
Air Pollution , Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Air Pollutants , COVID-19 , China , Environmental Monitoring , Humans , Particulate Matter , SARS-CoV-2
Критерии поиска